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Abstract 

Background: The abnormal intra-QRS potentials 

(AIQP) from a signal-averaged electrocardiogram 

(SAECG) have been proposed to indicate the risk of 

ventricular arrhythmias. However, the major limitation of 

current autoregressive moving average modeling is that 

the model order depends on the database. This study 

presented a new method based on the linear prediction 

modeling to improve the limits in AIQP analysis. 

Materials and Methods: A total of 154 normal 

Taiwanese (N), 94 ventricular premature contraction 

(VPC) patients and 26 sustained ventricular tachycardia 

(VT) patients were recruited. The AIQP were extracted 

from the modeling residual of a linear prediction model. 

From the analyses of all modeling residual curves 

(modeling residual versus model order), the optimal 

model order is six. The AIQP was quantified by the root-

mean-square value of the modeling residual within QRS 

interval. 

Results: The AIQP of VT patients were significantly 

greater than those of non-VT groups (normal and VPC 

groups) (p < 0.05). No significant differences appeared 

between normal and VPC groups. A linear combination 

of AIQP in leads X, Y and Z and three standardized time-

domain SAECG parameters provide the best diagnostic 

performance (specificity 85.9%, sensitivity 88.5% and 

predictive accuracy 86.2%). 

Conclusions: The AIQP can be extracted by the linear 

prediction modeling to evaluate the risk of ventricular 

arrhythmias, which can enhance the diagnostic 

performance of time-domain SAECG. And, the linear 

prediction modeling improves the clinical feasibility of 

AIQP analysis. 

1. Introduction 

Signal-averaged electrocardiogram (SAECG) has been 

an important noninvasive technique for evaluating the 

risk of ventricular arrhythmias [1,2]. An accurate 

identification of patients with high-risk ventricular 

arrhythmias is essential for reducing the threat of sudden 

cardiac death. SAECG has excellent negative predictive 

accuracy for stratifying the risk of ventricular arrhythmias 

in patients who are recovering from myocardial 

infarction, and for identifying patients with ischemic 

heart disease and unexplained syncope, who are likely to 

have inducible sustained ventricular tachycardia. 

However the positive predictive accuracy is not yet 

sufficiently high to justify interventions for those whose 

results of analysis are abnormal [3]. 

SAECG analyses focus on the low-amplitude and high-

frequency ventricular late potentials (VLPs) at the 

terminal QRS complex. VLPs have been approved to be 

related with the development of sustained ventricular 

tachycardia (VT) [2,3]. Because VLPs were overlapped 

with the end of large-amplitude QRS complex, an 

extremely poor signal-noise-ratio or noise interference 

can limit VLPs detection. 

Apart from the VLPs at the terminal QRS complex, 

Gomis et al. [4] and Lander et al. [5] presented a new 

concept - that the abnormal intra-QRS potentials (AIQP) 

that originate inside the QRS complex may also be an 

important index of the risk of ventricular arrhythmias. 

AIQP represent the low-amplitude notches and slurs. An 

autoregressive moving average (ARMA) model in the 

discrete cosine transform (DCT) domain was developed 

to analyze the unpredictable AIQP. It was demonstrated 

that AIQP can improve the diagnostic performance of 

SAECG. However, the principal limitation of their 

methodology is that the order of the model was selected 

in a data-dependent manner. This limitation reduced the 

clinical feasibility of AIQP analysis. 

This purpose of this study is to develop a linear 

prediction (LP) modeling in order to improve the 

limitation of current ARMA modeling in AIQP analysis. 

The optimal model order needn’t be compromised with 

the diagnostic performance. This study will demonstrate 

that the AIQP extracted by the LP modeling can 

effectively evaluate the risk of ventricular arrhythmias 

and enhance the diagnostic performance of SAECG. 

2. Methods 

There were 154 normal Taiwanese (N), 94 ventricular 

premature contraction (VPC) patients and 26 sustained 
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ventricular tachycardia (VT) patients were recruited in 

this study.  High-resolution ECGs were recorded using a 

commercially available Simens-Elema Megacart
®

 

machine with a bipolar, orthogonal X, Y and Z, lead 

system. 

2.1. Time-domain SAECG analysis 

Three time-domain parameters were calculated – the 

filtered total QRS duration (fQRSD), the root-mean-

square voltage of the last 40 ms of the QRS complex 

(RMS40) and the duration of the low amplitude signals 

below 40 µV of the terminal QRS complex (LAS40). The 

criteria of time-domain SAECG were fQRSD > 114 ms, 

LAS40 > 38 ms and RMS40 < 20 µV using a 40 to 250 

Hz filter [3]. If any two or more criteria were met, then 

the VLPs are regarded as present. 

2.2. Linear prediction modeling 

The basic idea of LP modeling of SAECG is that a 

sampled SAECG data can be approximated as a linear 

combination of past SAECG samples. The signals )(nx  

within the entire QRS complex are assumed to contain 

two main parts - (1) the normal and predictable QRS, 

)(ns , and (2) the unpredictable AIQP, )(nv . They are 

also assumed to be independent of each other. Figure 1 is 

the block diagram of LP modeling for the analysis of 

AIQP. 

The normal QRS can be estimated by the modeling 

output which is determined by a set of model coefficients. 

That is, 
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where )(ia  is the ith LP model coefficient. These 

coefficients are used as weighting factors in a linear 

combination, and m is the model order. 

The difference between the original QRS and the 

modeling output is the modeling residual )(nr  defined as 

follow. 
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Given a specific model order, the autocorrelation 

method was adopted to estimate the optimal model 

coefficients by minimizing the sum of the squares of the 

modeling residual [6]. 

Furthermore, the modeling residual can be represented 

as follows. 

 

Figure 1. Block diagram of the linear prediction model 

for analyzing the abnormal intra-QRS potentials. 
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where )(ne  is the modeling error that originates from the 

estimate of the normal QRS. Accordingly, the modeling 

residual consists of two parts - the AIQP and the 

modeling error. When the modeling error was reduced as 

much as possible, the modeling residual can be used to 

evaluate the unpredictable AIQP. 

2.3. Model order selection 

For application to real SAECG, no a prior knowledge 

of AIQP characteristics can be used to determine the 

optimal model order. A model of an excessively high 

order can still be used to estimate accurately the QRS and 

AIQP, but also increased the complexity of the 

calculation of the optimal model coefficients. However, a 

model of excessively low order can lead to the mixing of 

the modeling residual into the QRS, influencing the 

analysis of the AIQP. Accordingly, an appropriate model 

order is essential for AIQP analysis. In this study, the 

optimal model order determination was depended on the 

analyses of the modeling residual curves (modeling 

residual versus model order). The root-mean-square value 

of the modeling residual within the QRS interval was 

used to quantify the modeling residual as follows.  
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where 1n  and 2n  are the onset and offset of the entire 

QRS complex, respectively. Under the optimal model 

order and coefficients, the smallest RES was used to 

quantify the AIQP in leads X, Y and Z (AIQP_l 

represents AIQP in lead l, l = X, Y or Z). 
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2.4. Statistical analysis 

Data were presented as mean ± standard deviation 

(SD). All statistical analyses were done with Statistical 

Package for the Social Sciences
®

 (SPSS). Normal 

distribution tests were performed on all quantitative 

variables [7]. Statistical significance was defined as p 

values less than 0.05. Comparisons between pairwise 

groups were performed using a Student t test for normally 

distributed continuous variables. Levene’s test was used 

to check the homogeneity of variance between variables. 

The Mann Whitney U and Wilcoxon Rank Sum tests 

were used for those non-normally distributed [8].  

The definitions of clinical performance indices 

including specificity (Sp), sensitivity (Se), and total 

predictive accuracy (TPA) were used [9]. The optimal 

operation point for the classification of VT and normal 

subject was determined by the Fisher linear discriminant 

analysis (LDA) using SPSS for IQP and time-domain 

parameters. 

3. Results 

3.1. Modeling residual curves and model 

order selection 

The analyses of modeling residual curves (RES vs. 

model order) were performed on all SAECG. Figure 2 

plotted the modeling curves of lead Y SAECG for a 

normal subject (curve 1) and a VT patient (curve 2). 

These two curves showed that RES did not significantly 

reduce with the order of the model when the order was 

higher than 2 and 6 respectively. All of the modeling 

residual curves showed that the lowest model orders were 

between 2 and 6. Hence, selecting a model order beyond 

six didn’t significantly reduce the modeling residual. This 

study selected a six-order LP model for analyzing the 

AIQP of all SAECG. The RES of the VT patient was 

greater than that of the normal subject (5.6µV vs. 3.2µV). 

3.2. Results of time-domain and AIQP 

analyses 

Table 1 and Table 2 show results of time-domain and 

AIQP analyses of SAECG. The mean AIQP from leads Y 

and Z of the VT group significantly exceeded that of the 

normal and VPC groups (p < 0.001). The mean AIQP 

from leads X of the VT group significantly exceeded that 

of the normal group, but no significant differences 

between VT and VPC groups. 

The mean fQRSD of the VT group significantly 

exceeded that of the normal group, but it did not 

significantly differ from that of the VPC group. The mean 

LAS40 of VT group significantly exceeded that of both 

normal and VPC groups. However, the differences of 

 

Figure 2. Modeling residual curves of lead Y for a normal 

subject (curve 1) and a VT patient (curve 2). RES is the 

root-mean-square value of the modeling residual within 

QRS duration. 

Table 1: Summary of time-domain analysis 

Time-domain parameters 

Subjects 

fQRSD 

(ms) 

LAS40 

(ms) 

RMS40 

(µV) 

VT 95.7 ± 7.8 37.0 ± 7.0 20.6 ± 9.1 

VPC 92.1 ± 9.2 
NS

 31.1 ± 7.9 
**

 35.0 ± 19.8 
**

 

Normal 90.4 ± 8.6 
*
 30.5 ± 7.4 

**
 42.2 ± 25.5 

**
 

Table 2: Summary of AIQP analysis 

AIQP parameters (µV) 

Subjects AIQP_X AIQP_Y AIQP_Z 

VT 2.9 ± 1.0 4.8 ± 0.8 4.3 ± 1.1 

VPC 2.6 ± 0.6 
NS

 3.8 ± 0.7 
**

 3.3 ± 0.8 
**

 

Normal 2.3 ± 0.6 
*
 3.6 ± 0.7 

**
 3.2 ± 1.0 

**
 

The equivalent non-parametric Mann Whitney U and 

Wilcoxon Ranked Sum tests were performed to compare 

the means between VT and VPC or Normal groups. 

Abbreviations: NS, not significant (p>0.05); *, p < 0.01; 

**, p < 0.001; AIQP_l, abnormal intra-QRS potentials 

from lead l, where l = X, Y or Z).  
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fQRSD and LAS40 between the normal and VPC groups 

were not significant. The mean RMS40 differed 

significantly among the three study groups (21.9 µV in 

the VT group < 35.0 µV in the VPC group < 44.0 µV in 

the normal group). 

A linear combination of the AIQP and time-domain 

parameters has the best diagnostic performance (Se = 

88.5%, Sp = 85.9% and TPA=86.2%) among all 

individual parameters. The linearly combined parameter 

using LDA was -0.177 × AIQP_X + 1.033 × AIQP_Y + 

0.432 × AIQP_Z – 0.003 × fQRSD + 0.044 × LAS40 – 

0.017 × RMS40 – 5.362.  The diagnostic criterion was > 

0.88. 

4. Discussion and conclusions 

This study proposed a new method based on the LP 

modeling to analyze the AIQP. The modeling output and 

residual were used to estimate the normal predictable 

QRS and the unpredictable AIQP respectively. Equation 

3 showed that the unpredictable AIQP are mixed with the 

modeling error in the modeling residual. Hence, the 

modeling error or residual must be minimized in order to 

reach an accurate estimation of AIQP. The analyses of the 

modeling residual curves suggested that a six-order LP 

model is sufficient to obtain the lowest modeling residual 

for all SAECG modeling. A higher order was not helpful 

for reducing the modeling residual, but increased the 

complexity of calculating the optimal model coefficients. 

This work demonstrated that the unpredictable AIQP 

extracted by the LP modeling are useful for the evaluation 

of the risk of ventricular arrhythmias and improving the 

diagnostic performance of the SAECG. The AIQP can 

effectively separate VT and non-VT groups (VPC and 

normal groups). A linear combination of AIQP and time-

domain parameters effectively increased the diagnostic 

performance of SAECG. 
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